29 research outputs found

    GA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks

    Get PDF
    Optimizing location of controllers in wireless networks is an important problem in the cellular mobile networks designing. In this paper, I present two algorithms based on Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to solve it. In the first algorithm, my objective function is determined by the total distance based on finding maximum flow in a bipartite graph using Ford-Fulkerson algorithm. In the second algorithm, I generate pheromone matrix of ants and calculate the pheromone content of the path from controller i to base station j using the neighborhood includes only locations that have not been visited by ant k when it is at controller i. At each step of iterations, I choose good solutions satisfying capacity constraints and update step by step to find the best solution depending on my cost functions. I evaluate the performance of my algorithms to optimize location of controllers in wireless networks by comparing to SA, SA-Greedy, LB-Greedy algorithm. Numerical results show that my algorithms proposed have achieved much better more than other algorithms.DOI:http://dx.doi.org/10.11591/ijece.v3i2.229

    Space-Time Code Design Using Quaternions, Octonions and Other Non-Associative Structures

    Get PDF
    There are several non-associative finite dimensional division algebras over different number fields. Their representations in the corresponding matrix algebras preserve additive structure. However, the embedding does not preserve multiplication as matrix multiplication is associative. As such, it gives a generalized matrix representation. Indeed, a non-associative structure provides different platforms for more effective and useful space-time coding satisfying rank criteria, and coding gain criteria for multiple antenna wireless communication. Associative division algebras have dimension restrictions, whereas non-associative division algebras over suitable fields exist in infinitely many dimensions. We illustrate the above program by using octonion algebras

    Multi-Criteria Service Selection Agent for Federated Cloud

    Get PDF
    Federated cloud interconnects small and medium-sized cloud service providers for service enhancement to meet demand spikes. The service bartering technique in the federated cloud enables service providers to exchange their services. Selecting an optimal service provider to share services is challenging in the cloud federation. Agent-based and Reciprocal Resource Fairness (RRF) based models are used in the federated cloud for service selection. The agent-based model selects the best service provider using Quality of Service (quality of service). RRF model chooses fair service providers based on service providers\u27 previous service contribution to the federation. However, the models mentioned above fail to address free rider and poor performer problems during the service provider selection process. To solve the above issue, we propose a Multi-criteria Service Selection (MCSS) algorithm for effectively selecting a service provider using quality of service, Performance-Cost Ratio (PCR), and RRF. Comprehensive case studies are conducted to prove the effectiveness of the proposed algorithm. Extensive simulation experiments are conducted to compare the proposed algorithm performance with the existing algorithm. The evaluation results demonstrated that MCSS provides 10% more services selection efficiency than Cloud Resource Bartering System (CRBS) and provides 16% more service selection efficiency than RPF

    A Comparative Analysis of Machine Learning Models for Banking News Extraction by Multiclass Classification With Imbalanced Datasets of Financial News: Challenges and Solutions

    Get PDF
    Online portals provide an enormous amount of news articles every day. Over the years, numerous studies have concluded that news events have a significant impact on forecasting and interpreting the movement of stock prices. The creation of a framework for storing news-articles and collecting information for specific domains is an important and untested problem for the Indian stock market. When online news portals produce financial news articles about many subjects simultaneously, finding news articles that are important to the specific domain is nontrivial. A critical component of the aforementioned system should, therefore, include one module for extracting and storing news articles, and another module for classifying these text documents into a specific domain(s). In the current study, we have performed extensive experiments to classify the financial news articles into the predefined four classes Banking, Non-Banking, Governmental, and Global. The idea of multi-class classification was to extract the Banking news and its most correlated news articles from the pool of financial news articles scraped from various web news portals. The news articles divided into the mentioned classes were imbalanced. Imbalance data is a big difficulty with most classifier learning algorithms. However, as recent works suggest, class imbalances are not in themselves a problem, and degradation in performance is often correlated with certain variables relevant to data distribution, such as the existence in noisy and ambiguous instances in the adjacent class boundaries. A variety of solutions to addressing data imbalances have been proposed recently, over-sampling, down-sampling, and ensemble approach. We have presented the various challenges that occur with data imbalances in multiclass classification and solutions in dealing with these challenges. The paper has also shown a comparison of the performances of various machine learning models with imbalanced data and data balances using sampling and ensemble techniques. From the result, it’s clear that the performance of Random Forest classifier with data balances using the over-sampling technique SMOTE is best in terms of precision, recall, F-1, and accuracy. From the ensemble classifiers, the Balanced Bagging classifier has shown similar results as of the Random Forest classifier with SMOTE. Random forest classifier's accuracy, however, was 100% and it was 99% with the Balanced Bagging classifier

    An effective RGB color selection for complex 3D object structure in scene graph systems

    Get PDF
    The goal of this project is to develop a complete, fully detailed 3D interactive model of the human body and systems in the human body, and allow the user to interacts in 3D with all the elements of that system, to teach students about human anatomy. Some organs, which contain a lot of details about a particular anatomy, need to be accurately and fully described in minute detail, such as the brain, lungs, liver and heart. These organs are need have all the detailed descriptions of the medical information needed to learn how to do surgery on them, and should allow the user to add careful and precise marking to indicate the operative landmarks on the surgery location. Adding so many different items of information is challenging when the area to which the information needs to be attached is very detailed and overlaps with all kinds of other medical information related to the area. Existing methods to tag areas was not allowing us sufficient locations to attach the information to. Our solution combines a variety of tagging methods, which use the marking method by selecting the RGB color area that is drawn in the texture, on the complex 3D object structure. Then, it relies on those RGB color codes to tag IDs and create relational tables that store the related information about the specific areas of the anatomy. With this method of marking, it is possible to use the entire set of color values (R, G, B) to identify a set of anatomic regions, and this also makes it possible to define multiple overlapping regions

    An Integrated Interactive Technique for Image Segmentation using Stack based Seeded Region Growing and Thresholding

    Get PDF
    Image segmentation is a challenging process in numerous applications. Region growing is one of the segmentation techniques as a basis for the Seeded Region Growing method. A novel real time integrated method was developed in the current work to locate the segmented region of interest of an image based on the Region Growing segmentation method along with the thresholding supported image segmentation. Through the proposed work, a homogeneity based on pixel intensity was suggested as well as the threshold value can be decided via a variety of schemes such as manual selection, Iterative method, Otsu’s method, local thresholding to obtain the best possible threshold. The experimental results were performed on different images obtained from an Alpert dataset. A comparative study was arried out with the human segmented image, threshold based region growing, and the proposed integrated method. The results established that the proposed integrated method outperformed the region growing method in terms of the recall and F-score. Although, it had comparable recall values with that gained by the human segmented images. It was noted that as the image under test had a dark background with the brighter object, thus the proposed method provided the superior recall value compared to the other methods

    Chinese-chi and Kundalini yoga Meditations Effects on the Autonomic Nervous System: Comparative Study

    Get PDF
    Cardiac disease is one of the major causes for death all over the world. Heart rate variability (HRV) is a significant parameter that used in assessing Autonomous Nervous System (ANS) activity. Generally, the 2D Poincare′ plot and 3D Poincaré plot of the HRV signals reflect the effect of different external stimuli on the ANS. Meditation is one of such external stimulus, which has different techniques with different types of effects on the ANS. Chinese Chi-meditation and Kundalini yoga are two different effective meditation techniques. The current work is interested with the analysis of the HRV signals under the effect of these two based on meditation techniques. The 2D and 3D Poincare′ plots are generally plotted by fitting respectively an ellipse/ellipsoid to the dense region of the constructed Poincare′ plot of HRV signals. However, the 2D and 3D Poincaré plots sometimes fail to describe the proper behaviour of the system. Thus in this study, a three-dimensional frequency-delay plot is proposed to properly distinguish these two famous meditation techniques by analyzing their effects on ANS. This proposed 3D frequency-delay plot is applied on HRV signals of eight persons practicing same Chi-meditation and four other persons practising same Kundalini yoga. To substantiate the result for larger sample of data, statistical Student t-test is applied, which shows a satisfactory result in this context. The experimental results established that the Chi-meditation has large impact on the HRV compared to the Kundalini yoga

    Utilizing Index‑Based Periodic High Utility Mining to Study Frequent Itemsets

    Get PDF
    The potential employability in diferent applications has garnered more signifcance for Periodic High-Utility Itemset Mining (PHUIM). It is to be noted that the conventional utility mining algorithms focus on an itemset’s utility value rather than that of its periodicity in the transaction. A MEAN periodicity measure is added to the minimum (MIN) and maximum (MAX) periodicity to incorporate the periodicity feature into PHUIM in this proposed work. The MEAN-periodicity measure brings a new dimension to the periodicity factor and is arrived at by dividing itemset’s period value by the total number of transactions in that dataset. Further, an algorithm to mine Index-Based Periodic High Utility Itemset Mining (IBPHUIM) from the database using an indexing approach is also proposed in this paper. The proposed IBPHUIM algorithm employs a projectionbased technique and indexing procedure to increase memory and execution speed efciency. The proposed model avoids redundant database scans by generating sub-databases using an indexing data structure. The proposed IBPHUIM model has experimented with test datasets, and the results drawn show that the proposed IBPHUIM model performs considerably better
    corecore